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Objective

Presentation on the current state of knowledge of 
plasticity, constitutive behavior, and forming 

limits with a focus on opportunities, roadblocks, 
threats and requirements for use of AHSS in 

automotive applications.
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Outline

Microstructure/Polycrystalline vs. Continuum
Application Needs;  Texture & High Exponent Yield Functions; Forming Limits of AHSS; Lessons from Metallic Glass

Elasto-plasticity
Young’s Modulus variation, quasiplastic strain

Distortional Hardening Behavior
Isotropic, kinematic, distortional hardening

Forming Limits
Nonlinear Strain Path Effects, Curvature Effects, Necking vs. Fracture, Heightened importance for AHSS

Challenges
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Microstructure  vs. Continuum Approach

Phenomenon suggesting use of Micro-level Model
Tripping and/or  Twinning mechanisms
Dual and Complex phases
Highly textured alloys

Limited Slip Systems (FCC & HCP)
Elongated Grain Shapes
Large Grains and/or Ultra-thin sheet

Unusual Hardening or Failure Behaviors
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Perceived Characteristics of the Two 
Approaches to Modeling

Continuum 
Approach

Low                                     Accuracy                                                 High

Cost

High

Low

Microstructure 
Approach
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Reliability is the Primary Driver For 
Alloy Development

Continuum 
Approach

Low                                     Accuracy                                                 High

Cost

High

Low
Cost is not so important as an 

understanding and opportunity 
for optimization using a 

mechanism-based  approach.

Alloy Development

Microstructure 
Approach
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Microstructure Approach is Ideal For 
Alloy Development

Continuum 
Approach

Low                                     Accuracy                                                 High

Cost

High

Low

Microstructure 
Approach

Alloy Development
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Cost is the Primary Driver For 
Virtual Die Tryout

Microstructure 
Approach

Continuum 
Approach

Low                                     Accuracy                                                 High

Virtual Die Tryout

Cost

High

Low

Alloy Development
Two reasons… Still have Physical 
Tryout as a backup to oversights 

missed by Virtual Tryout… and…
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Why COST is so Important in Virtual Tryout

Strain FLC

Finite Element Simulation of the 
Forming Process

Approve for Die Build

Finding the right forming 
conditions for a given panel 
requires SCORES of iterations on 
blank size, restraining forces, and 
tool/product shape to get it right…

Multiply this by the 100’s of dies 
necessary to form the panels of a 

vehicle… the need for minimizing 
cost per analysis is clear.
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Can the Micro Approach become more 
efficient to handle Virtual Die Tryout?

Microstructure 
Approach

Continuum 
Approach

Low                                     Accuracy                                                 High

Virtual Die Tryout

Cost

High

Low

No Texture 
Evolution

Weaken Grain 
Coupling

Ignore Grain 
Boundaries

Reduce Grain 
Orientations

These and other modifications can 
be applied individually or in 

combination…
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Can the Macro Approach become 
sufficiently reliable to satisfy the needs?

Microstructure 
Approach

Continuum 
Approach

Low                                     Accuracy                                                 High

Virtual Die Tryout

Cost

High

Low
Von Mises Yield

Hill Yield

Chabouche
Hardening Yoshida 

Hardening

Non-Associated 
Flow Barlat Yield

Anisotropic 
Hardening

These and other modifications can 
be applied individually or for 
many cases, in combination…

Multi-phase 
Hardening
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Synergy Between Approaches

Microstructure 
Approach

Continuum 
Approach

Low                                     Accuracy                                                 High

Virtual Die Tryout

Cost

High

Low

Advanced Material 
Model

Numerical Experiments

Model Calibration
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Alloy Development

Synergy Between Approaches

Microstructure 
Approach

Continuum 
Approach

Low                                     Accuracy                                                 High

Virtual Die Tryout

Cost

High

Low

Numerical Experiments

Model Calibration

Advanced Model Development
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Simplified View of Application Areas

Alloy Development Virtual Die Tryout

Advanced 
Continuum Model 

Development

Microstructure 
Approach

Continuum 
Approach

Advanced 
Continuum Model 

Calibration
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Outline

Microstructure/Polycrystalline vs. Continuum
Application Needs;  Texture & High Exponent Yield Functions; Forming Limits of AHSS; Lessons from Metallic Glass

Elasto-plasticity Hysterisis
Young’s Modulus variation, quasiplastic strain

Distortional Hardening
Isotropic, kinematic, distortional hardening

Forming Limits
Nonlinear Strain Path Effects, Curvature Effects, Necking vs. Fracture, Heightened importance for AHSS

Challenges
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Hysterisis of loading/unloading

1

Complex Unloading Model for Springback Prediction

Dissertation Committee
Dr. Robert H. Wagoner, Advisor

Dr. June Key Lee
Dr. Stephen Eric Bechtel
Dr. Rebecca B. Dupaix

Dept. of Mechanical Engineering
The Ohio State University

Oral Examination for the Degree of Doctor Philosophy
Feb 23, 2011

Li Sun

Uniaxial Loading-Unloading Test
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Three ways to model the behavior
Expanded View of Loading-Unloading Test

9
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1) Ignore hysterisis and treat 
it as a change in Elastic 
Modulus (GREEN Line)

2) Define yield stress near to 
the proportional limit and 
treat the nonlinear post-
yield behavior as a micro-
plasticity domain of 
conventional plasticity,

3) Leave elasticity and 
plasticity the same, but 
include a new type of 
quasi-plastic strain,  QPE.



MSR Lab Meeting 2012, Jan 31• TBS • 18

2 Surface Framework of QPE Model
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Advantages of QPE Model

Unfinished Cycles of Loading-Unloading Test
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Partial Unloading of 
Forming Stresses is 
Common in Curved 
Areas of the Product
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Outline

Microstructure/Polycrystalline vs. Continuum
Application Needs;  Texture & High Exponent Yield Functions; Forming Limits of AHSS; Lessons from Metallic Glass

Elasto-plasticity Hysterisis
Young’s Modulus variation, quasiplastic strain

Distortional Hardening
Isotropic, kinematic, distortional hardening

Forming Limits
Nonlinear Strain Path Effects, Curvature Effects, Necking vs. Fracture, Heightened importance for AHSS

Challenges
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Nature of Distortional Hardening

Deformation Behavior 
Under Conditions of 

Combined Stress

- Prof. Y. Tozawa

1977 GMR 
Symposium

Experimental Probing of the 
Yield Surface Evolution
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Proportional Loading Tests Suggest 
Isotropic Hardening

70/30 Brass
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Pi-plane view shows a 
von Mises behavior for brass
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Complete Non-Proportional Loading Tests 
Show Complex Hardening Behavior

70/30 Brass
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Complete Non-Proportional Loading Tests 
Show Complex Hardening Behavior
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Complete Non-Proportional Loading Tests 
Show Complex Hardening Behavior
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Complete Non-Proportional Loading Tests 
Show Complex Hardening Behavior
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1) Distortion of the Yield Surface

2) Anisotropic hardening

3) Shape stabilizes after 1% and 
before 5% strain
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Complete Non-Proportional Loading Tests 
Show Complex Hardening Behavior
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2) Anisotropic hardening

3) Shape stabilizes after 1% and 
before 5% strain

4) Stabilized shape is different 
from the Initial Yield Surface

initial
“final”



MSR Lab Meeting 2012, Jan 31• TBS • 28

Normalized Yield Behavior to Unit Circle
 

70/30 Brass
30% Uniaxial
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Interesting 
Question: Can 
one model this 
with kinematic 
hardening?
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Similar Distortion Observed In Steel 

Proportional 
Loading Tests 

Suggest Isotropic 
Hardening

Uniaxial Prestrain to 
5%, 10%, and 20% 

Show Distortion of the 
Subsequent Yield

Anisotropic Hardening 
After 20% Strain
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Advanced Kinematic Hardening Models

Proportional 
Loading Tests 

Suggest Isotropic 
Hardening

Uniaxial Prestrain to 
5%, 10%, and 20% 

Show Distortion of the 
Subsequent Yield

Anisotropic Hardening 
After 20% Strain
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Advanced Kinematic Hardening Models

Initial Yield

Mixed Kinematic Model
(Errors up to 15%)

Actual Yield After 20% 
Uniaxial Prestrain

Prestrain 
Loading 

Direction

Questions: 

How do we accurately model this behavior?

What happens under non-linear loading?
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Continuum 
Approach

Characterizing Distortional Hardening is a 
prime example to benefit from this plan

Advanced 
Continuum Model 

Development

Microstructure 
Approach
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Outline

Microstructure/Polycrystalline vs. Continuum
Application Needs;  Texture & High Exponent Yield Functions; Forming Limits of AHSS; Lessons from Metallic Glass

Elasto-plasticity Hysterisis
Young’s Modulus variation, quasiplastic strain

Distortional Hardening
Isotropic, kinematic, distortional hardening

Forming Limits
Nonlinear Strain Path Effects, Curvature Effects, Necking vs. Fracture, Heightened importance for AHSS

Challenges
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Effect of Bending On Forming Limits

Punch Tip Radius, R

Lock Bead Radius
6.35 mm

Punch
Travel

Die Profile Radius
 6.88 mm

Specimen

Punch

38.10 mm

Material
Thickness

63.50 mm

95.25 mm

When does necking occur if the 
sheet metal is curved? 

OK for Necking

Causes Neck to Form
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Suppression of Necking 
Can Lead to Fracture Without Necking

Fracture is not considered in 
traditional manufacturing

… now recognized as a problem with AHSS

Fracture Limit ?

Necking Limit
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Why Fracture is More Important for AHSS
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The possibility of 
Fracture Without Necking 

depends only on geometry, which defines 
the strain difference through the curved 

sheet {=ln(1+t/R) } ,
and its relation to the strain gap 

between the Necking and Fracture Limits.
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The Challenge of Nonlinear Paths

What is SAFE?

2

1
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What does this data mean 
for Linear Paths?
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Uniaxial Tension 
Strain History

0% Strain
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Uniaxial Tension 
Strain History

5% Strain
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Uniaxial Tension 
Strain History

12% Strain
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Uniaxial Tension 
Strain History

17% Strain
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The Strain-Based FLC is DYNAMIC
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How can we reliably assess formability?
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Strain FLC

Strain Analysis  
+8.7% Margin of Safety

Ignoring the DYNAMIC nature of the FLC 
has costly consequences

Tryout Result:
Splits at “Zone 4” 

in an area with 
17% thinning

Splits In Zone 4
Complex parts & processes designed 

base solely on net strain and the strain 
FLC, even with what seems to be high 

margin of safety…

…may still fail in tryout and 
require additional changes to 
product and tooling shape or 

processing conditions. 
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Paradigm Change: a new perspective

No assumptions, just a 
simple question…

Are these experimental 
results LESS complex 
in stress-space?
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Transformation equations for 
an arbitrary time record of plastic strain
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Strain FLC to Stress FLC 
For Linear Strain Paths  
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Strain FLC to Stress FLC 
For Bi-Linear Strain Paths
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Observation Leads to New Solution

Stress-Based FLC’s do not appear to be 
sensitive to changes in strain path
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Stress Based FLC’s are not Sensitive to Path
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Same 
FEA

Body Side Component

Stress FLC

Stress Analysis
-20.1% Margin of Safety

Strain FLC

Strain Analysis Expected  
+8.7% Margin of Safety

Tryout Result
Splits at “Zone 

4”

Splits In Zone 4

Used to Approve 
Die Build

Stress Map of 
Critical Areas

Same FE 
Simulation
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Other Stress-Equivalent Solutions
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Polar Diagram of the EPS
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Illustration of Similarity & Differences

Path Sensitive Strain FLD Polar EPS Diagram 
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Illustration of Similarity & Differences

Path Sensitive Strain FLD Polar EPS Diagram 
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The Reason

Path Sensitive Strain FLD Polar EPS Diagram 
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Importance of Nonlinear Path for AHSS

In the past, anomalous failures caused by 
ignoring the effect of nonlinear paths on 
formability… i.e., treating strain limits as 
static limits… have led industry to limit 
strains in future applications to even lower 
limits…
Industry cannot afford this solution using 
AHHS with lower ductility than low carbon 
steel… not when a solution is available to 
maximize the use of the available ductility.
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Thank you for your attention.

Questions?


